
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 150
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Design and Performance Analysis of Multiplier
using Wallace-Booth Algorithm

Narsampalli Bhargavi1, Ms. Shatabdi Nandi2, D. Devi Lavanya 3

M.E Student(ES), Stanley College of Engineering and Technology, Hyderabad, India1,3

Assistant Professor, Stanley College of Engineering and Technology, Hyderabad, India2

bhargavi90.palli@gmail.com1, shatabdinandi07@gmail.com2, ddlavanya@gmail.com3

Abstract— This paper presents the Radix-4 Booth Algorithm with 3:2 compressors, the Radix-8 Booth algorithm with 4:2 compressors and
the Radix-8 Booth algorithm with Asynchronous counters. The design is structured for m × n multiplication where m and n can reach up to
126 bits. Carry Look ahead Adder is used as the final adder to enhance the speed of operation. Finally the performance improvement of
multipliers is validated by implementing a higher order FIR filter. Adder structure with counters is faster compared to Wallace tree and
requires fewer gates.
Index Terms— Booth Encoding, Wallace Tree, Compressor, Carry Look Ahead Adder, Carry Save Adder, Asynchronous counters, FIR
Filter.

—————————— ——————————
1 INTRODUCTION
Multipliers are key components of many high performance
systems such as FIR filters, microprocessors, digital signal
processors, etc. A system’s performance is generally
determined by the performance of the multiplier because
the multiplier is generally the slowest element in the
system. Furthermore, it is generally the most area
consuming. Hence, optimizing the speed and area of the
multiplier is a major design issue. However, area and speed
are usually conflicting constraints so that improving speed
results mostly in larger areas.

As a result, a whole spectrum of multipliers with different
area-speed constraints has been designed with fully parallel
multipliers at one end of the spectrum and fully serial
multipliers at the other end. In between are digit serial
multipliers where single digits consisting of several bits are
operated on. These multipliers have moderate performance
in both speed and area. However, existing digit serial
multipliers have been plagued by complicated switching
systems and/or irregularities in design. Radix 2n multipliers
which operate on digits in a parallel fashion instead of bits
bring the pipelining to the digit level and avoid most of ‘the
above problems. They were introduced by M. K. Ibrahim in
1993. These structures are iterative and modular. The
pipelining done at the digit level brings the benefit of
constant operation speed irrespective of the size of’ the
multiplier. The clock speed is only determined by the digit
size which is already fixed before the design is
implemented. Booth and Booth Wallace multiplier is used
for implementing digital signal processing algorithms in
hearing aids.

2 BOOTH ENCODING ALGORITHM

Booth algorithm is a powerful algorithm for signed number
multiplication, which treats both positive and negative
numbers uniformly.

2.1 Radix-4 Booth Encoding

The major disadvantage of the Radix-2 algorithm was that
the process required n shifts and an average of n/2
additions for an n bit multiplier. This variable number of
shift and add operations is inconvenient for designing
parallel multipliers. Also the Radix-2 algorithm becomes
inefficient when there are isolated 1’s. The Radix-4
modified Booth algorithm overcomes all these limitations
of Radix-2 algorithm. For operands equal to or greater than
16 bits, the modified Radix-4 Booth algorithm has been
widely used. It is based on encoding the two’s complement
multiplier in order to reduce the number of partial products
to be added to n/2. The multiplier, Y in two’s complement
form can be written as in

Y = -Yn-1 2n-1 + ∑ Yi2i ; 0 ≤ i ≤ n-2

 It can be written as

Y = ∑ (- 2 Y2i+1 + + Y2i +Y2i-1) 22i ; 0 ≤ i ≤ n-2

Table 1 shows the encoding of the signed multiplier Y,
using the Radix-4 Booth algorithm. Radix-4 Booth recoding
encodes multiplier bits into [-2, 2]. Here we consider the
multiplier bits in blocks of three, such that each block
overlaps the previous block by one bit. It is advantageous
to begin the examination of the multiplier with the least
significant bit.

IJSER

http://www.ijser.org/
mailto:bhargavi90.palli@gmail.com1
mailto:shatabdinandi07@gmail.com2

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 151
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Table 1: Radix-4 Multiplication

Multiplier Bits Recoded Operation
on multiplicand, X Y2i+1 Y2i Y2i-1

0 0 0 0 X
0 0 1 +1 X
0 1 0 +1 X
0 1 1 +2 X
1 0 0 -2 X
1 0 1 -1 X
1 1 0 -1 X
1 1 1 0 X

The overlap is necessary so that we know what happened
in the last block, as the most significant bit of the block acts
like a sign bit.

2.2 Radix-8 Booth Encoding

Radix-8 Booth recoding applies the same algorithm as that
of Radix-4, but now we take quartets of bits instead of
triplets. Each quartet is codified as a signed digit using
Table 2. Radix-8 algorithm reduces the number of partial
products to n/3, where n is the number of multiplier bits.
Thus it allows a time gain in the partial products
summation.

Table 2: Radix-8 Multiplication

3 WALLACE TREE

The Wallace tree method is used in high speed designs in
order to produce two rows of partial products that can be
added in the last stage. Also critical path and the number of
adders get reduced when compared to the conventional
parallel adders. Here the Wallace tree has taken the role of
accelerating the accumulation of the partial products. Its
advantage becomes more pronounced for multipliers of
greater than 16 bits .The speed, area and power
consumption of the multipliers will be in direct proportion
to the efficiency of the compressors. The 3:2 compressors
and 4:2 compressors are shown in Fig.1 and Fig.2
respectively. In this regard, we can expect a significant
reduction in computing multiplications.

Figure 1: Compressor 3:2

The 3:2 compressors make use of a carry save adder .The
carry save adder outputs two numbers of the same
dimensions as the inputs, one is a sequence of partial sum
bits and other is a sequence of carry bits. In carry save
adder, the carry digit is taken from the right and passed to
the left, just as in conventional addition; but the carry digit
passed to the left is the result of the previous calculation
and not the current one. So in each clock cycle, carries only
have to move one step along and the clock can tick much
faster. Also the carry-save adder produces all of its output
values in parallel, and thus has the same delay as a single
full-adder. The 4:2 compressors have been widely
employed in the high speed multipliers to lower the latency
of the partial product accumulation stage. A 4:2compressor
can be built using two 3:2 compressors. Owing to its
regular interconnection, the 4:2 compressors is ideal for the
construction of regularly structured Wallace Tree with low
complexity.

Figure 2: Compressor 4:2

The final results obtained at the output of the Wallace tree
are added using a Carry Look-ahead Adder (CLA) which is
independent of the number of bits of the two operands.
In Carry Look-ahead Adder, for every bit the carry and
sum outputs are independent of the previous bits and thus

Multiplier Bits Recoded Operation
on multiplicand, X Yi+2 Yi+1 Yi Yi-1

 0 0 0 0 0 X
0 0 0 1 +1 X
0 0 1 0 +1 X
0 0 1 1 +2 X
0 1 0 0 +2 X
0 1 0 1 +3 X
0 1 1 0 +3 X
0 1 1 1 +4 X
1 0 0 0 -4 X
1 0 0 1 -3 X
1 0 1 0 -3 X
1 0 1 1 -2 X
1 1 0 0 -2 X
1 1 0 1 -1 X
1 1 1 0 -1 X
1 1 1 1 0 X

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 152
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

the rippling effect has completely been eliminated. It works
by creating two signals, propagate and generate for each bit
position, based on whether a carry is propagated through
from a less significant bit position, a carry is generated in
that bit position, or if a carry is killed in that bit position.

4 ARCHITECTURE

This section deals with architecture of the proposed
methods.

4.1 Radix-4 using 3:2 Compressors

Booth Encoder encodes the multiplier using Radix-4
algorithm. The encoded output is given to the partial
product generator which produces partial products and
number of partial products generated are (n/2+1).These
partial products are passed to Wallace Tree (with 3:2
compressors).Wallace tree reduces (n/2+1) partial products
to 2 partial products .Final stage used is Carry Look Ahead
Adder which adds the sum and carry (2 partial products).

Figure 3: Radix-4 Booth Algorithm with 3:2 Compressors

4.2 Radix-8 using 4:2 Compressors

Booth Encoder encodes the multiplier using Radix-8
algorithm. The encoded output is given to the partial
product generator which produces partial products and
number of partial products generated is (n/3+1). These
partial products are passed to Wallace Tree (with 4:2
compressors).Wallace tree reduces (n/3+1) partial products
to 2 partial products. Final stage used is Carry Look Ahead
Adder which adds the sum and carries (2 partial products).

Figure 4: Radix-8 Booth Algorithm with 4:2 Compressors

4.3 Radix-8 using Asynchronous Counters

In Radix-8 multiplier 4:2 compressors is replaced by
asynchronous counters. The counters are used to count the
number of 1’s in a column. Each of them is a simple DFF
based ripple counter. The clock input is synchronized with
the input data rate and thus the operands can be
accumulated with a high frequency defined by the setup
time and propagation delay of a DFF. Moreover, the
counters change states only when the input is “1,” which
leads to low switching power. This simple and efficient bit
accumulation technique is used to design this multiplier.
Advantages of this method are low complexity and speed
increase.

Figure 5: Radix-8 with Asynchronous Counters

5 IMPLEMENTATION RESULTS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 153
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The design entry of 126×126 bit multipliers using Radix-4
Booth algorithm with 3:2 compressors, Radix-8 Booth
algorithm with 4:2 compressors and Radix-8 Booth
algorithm with Asynchronous counters are done using
VHDL and simulated using ModelSim SE 6.4 design suite
from Mentor Graphics. It is then synthesized and
implemented in a Xilinx XC3S5000 fg1156 -4 FPGA using
the Xilinx ISE 9.2i design suite. Figure 6 presents a snapshot
of simulation waveforms for 126×126 bit multiplier. Table 3
summarizes the FPGA resource utilization of these three
multipliers.

Figure 6: Simulation of 126 × 126 bit multiplier

Table 3: Device Utilization Summary of Multipliers

Logic
Utilization
(XC3S5000
fg1156 -4)

Radix-4
using 3:2
Compressors

Radix-8
using 4:2
Compressors

Radix-8 using
Asynchronous
Counters

No. of four i/p
LUTs

 29,990 43,520 34981

No. of Slices 16,535 25,100 69770
No. of IOBs 503 503 506
Maximum
combinational
path delay(ns)

 448.270

 448.082

 No
Combinational
delay

Average pin
delay

 5.514 4.781

 4.531

Maximum pin
delay

 27.603 28.171 28.051

Finally the performance improvement of first two methods
is validated by implementing a higher order FIR filter using
these multipliers. Table 4 summarizes the FPGA resource
utilization for FIR filters using these multipliers. This shows
that the multiplier using Radix-8 Booth multiplier with
Asynchronous counters gives better speed and the number
of occupied slices is lower for the multiplier using Radix-4
Booth algorithm with 3:2 compressors. The FIR filters are
implemented in Xilinx XC3S1500fg676-4 FPGA.

Table 4: Device Utilization Summary of FIR Filters

 Logic Utilization
(XC3S5000fg1156 -4)

Radix-4 using 3:2
Compressors

Radix-8 using 4:2
Compressors

Number of four input
LUTs

 9,870

 11,099

Number of occupied
Slices

 5,445 5,910

Number of bonded
IOBs

 311

 311

Maximum
combinational path
delay (ns)

 100.241

 75.502

6 CONCLUSION

In this paper, the design and implementation of three high
performance parallel multipliers is proposed. The first
multiplier makes use of the Radix-4 Booth Algorithm with
3:2 compressors, the second multiplier uses the Radix-8
Booth algorithm with 4:2 compressors, and the third
multiplier uses the Radix-8 Booth algorithm with
asynchronous counters. All the designs were implemented
on Spartan 3 FPGA. The multiplier using Radix-8 Booth
algorithm with 4:2 compressors shows more reduction in
device utilization as compared to the multiplier using
Radix-4 Booth algorithm with 3:2 compressors. Meanwhile
the multiplier using Radix-8 Booth algorithm with 4:2
compressors are found to be faster than the other. The first
two multipliers have been implemented in FIR filters and
found that the FIR filter with radix 8 booth encoding and
4:2 compressors is fastest.

7 REFERENCES

[1] C. S. Wallace, “A Suggestion for a Fast Multiplier”, Electronic
Computers, IEEE Transactions, vol.13, Page(s): 14-17, Feb. 1964.

[2] Dong-Wook Kim, Young-Ho Seo, “A New VLSI Architecture of
Parallel Multiplier-Accumulator based on Radix-2 Modified Booth
Algorithm”, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions, vol.18, pp.: 201-208, 04 Feb. 2010.

[3] Hussin R et al , “An Efficient Modified Booth Multiplier
Architecture”, IEEE International Conference, pp.:1-4,2008.

[4] Lakshmanan, Masuri Othman and Mohamad Alauddin Mohd.Ali,
“High Performance Parallel Multiplier using Wallace-Booth
Algorithm”, Semiconductor Electronics, IEEE International
Conference , pp.: 433-436, Dec. 2002.

[5] Louis P. Rubinfield, “A Proof of the Modified Booth's Algorithm for
Multiplication”, Computers, IEEE Transactions,vol.24, pp.: 1014-1015,
Oct. 1975.

[6] Nilay Nagdeve, “A Simulation Based Evaluation of Different
Compressors For Fast Multiplication” International Journal of
Scientific & Engineering Research Volume 3, Issue 6, June-2012.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 154
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[7] Prasanna Raj P, Rao, Ravi, “VLSI Design and Analysis of
Multipliers for Low Power”, Intelligent Information Hiding and
Multimedia Signal Processing, Fifth International Conference, pp.:
1354-1357, Sept. 2009.

[8] Rajendra Katti, “A Modified Booth Algorithm for High Radix
Fixedpoint Multiplication”, Very Large Scale Integration (VLSI)
Systems, IEEE Transactions, vol. 2, pp.: 522-524, Dec. 1994.

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	2 BOOTH ENCODING ALGORITHM

